ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Brødr. Sunde as
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-396-274-EN
Issue date:	12.01 .2016
Valid to:	12.01 .2021

Sundolitt ${ }^{\circledR}$ XPS

Brødr. Sunde as

Sundolitt
www.epd-norge.no

General information

Product:

Sundolitt ${ }^{\circledR}$ XPS Insulation board

Program operator:

Næringslivets Stiftelse for Miljødeklarasjoner
P.O.Box 5250 Majorstuen, N-0303 Oslo, Norway
phone: +4723088292
e-mail: post@epd-norge.no

Declaration number:

NEPD-396-274-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:
CEN Standard EN 15804 serves as core PCR
NPCR 12 rev1, Insulation materials, date: 10.12.2012

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturerinformation, life cycle assessment data and evidences.

Declared unit:

$1 \mathrm{~m}^{2}$ Sundolitt ${ }^{\circledR}$ XPS insulation board, 33 mm thickness with thermal resistance $R=1 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ at factory gate

Declared unit with option:

$1 \mathrm{~m}^{2}$ Sundolitt ${ }^{\circledR}$ XPS insulation board, 33 mm thickness with thermal resistance $\mathrm{R}=1 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$, transported to building site, handled after end of useful life and recycled

Functional unit:

Verification:
The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010

| $\square \quad$ internal |
| :---: | :---: |
| Third party verifier: |
| fui/olel |
| Mie Vold, Senior researcher, Østfoldforskning |
| (Independent verifier approved by EPD Norway) |

Owner of the declaration:
Brødr. Sunde as

Contact person:	Frank Wilhelmsen
Phone:	+4770177000
e-mail:	Frank.Wilhelmsen@sundolitt.com

Manufacturer:

Brødr.Sunde as

Place of production:
Skedsmo, Norway

Management system:

Brødr. Sunde is ISO 9001-certified

Organisation no:
916416784

Issue date:
12.01.2016

Valid to:
12.01.2021

Year of study:
2015

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

The EPD has been worked out by:
Martin S. Melvær and Andreas Brekke

Approved

Håkon Hauan
Managing Director of EPD-Norway

Product

Product description:

Sundolitt ${ }^{\circledR}$ XPS insulation material is made from extruded polystyrene that have high compressive strength, very low water absorption, and very good insulating properties.

Areas of use for Sundolitt ${ }^{\circledR}$ XPS is insulating and frost protection for buildings and construction, as well as the technical installations. This includes protection against frost for buildings of all kinds, road, railway, sports facilities, etc.

The lifetime of the Sundolitt ${ }^{\circledR}$ XPS is long and the properties will be kept intact. The material meets the strict requirements for insulation and comfort, moisture absorption and insulating properties which are set for insulating and frost protection.

Sundolitt ${ }^{\circledR}$ XPS is produced at Skedsmo plant by Brødr. Sunde as.

Product specification:

Material input per functional unit

Materials	kg	$\%$
Polystyrene	0,985	$93,3 \%$
Blowing agent 1	0,018	$1,7 \%$
Blowing agent 2 $\left(\mathrm{CO}_{2}\right)$	0,046	$4,4 \%$
Cell regulating agents	0,005	$0,5 \%$
Colour	0,002	$0,2 \%$

	Thickness [mm]		
Compressive strength [kPa]	$\mathbf{3 3}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$
$\mathbf{2 5 0}$	0,9	1,4	2,8
$\mathbf{3 0 0}$	1,0	1,5	3,0
$\mathbf{4 0 0}$	1,1	1,7	3,3
$\mathbf{5 0 0}$	1,2	1,8	3,5
$\mathbf{7 0 0}$	1,4	2,1	4,2

LCA: Calculation rules

Declared unit:

$1 \mathrm{~m}^{2}$ Sundolitt $^{\circledR}$ XPS insulation board of thickness 33 mm with thermal resistance $R=1 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$, transported to building site.

The declared unit is found by calculating the amount of product needed to achieve the thermal resistance. In addition to the declared unit, a declared unit with options is evaluated, where further life cycle phases are included. These life cycle phases include transport to building site, assembly, waste collection, sorting, waste treatment, and benefits.

Flowsheet showing the life cycle of Sundolitt ${ }^{(®)}$ XPS insulation. The figure shows the most important material and energy flows, which life cycle stages that are included, and which that are left out.

Data quality:

All material and energy quantities for the production process and all transport distances in modules A1-A3 are based on specific data for 2014 and are of good quality. Plastic feedstock and other chemical inputs are based on generic data. The bulk of this data comes from the Ecoinvent 2.2 database and is subject to quality assurance. Data for plastic feedstock is manipulated in order to separate oil used as an energy source and oil used as material feedstock. No background data is older than 10 years and the majority of data is from the last 5 years.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

System boundary:

Modules A1-A5, C2-C4 and D are declared, while modules B1$B 7$ and $C 1$ are not declared, as it is not expected that the product will be modified during the service life. A flowsheet for the included processes is illustrated below. Stapled lines denote processes that are not included, while all solid lines denote processes within the system boundaries.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts ($<1 \%$) are not included. This cut-off rule does not apply for hazardous materials and substances.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.
The tables below specify attributes for other life cycle stages than "cradle to factory gate". The transport distance from factory gate to building site is set to 100 km . This distance is used as a basis for unknown distances in the Ecoinvent database. Waste scenarios are made with conservative estimates when it comes to transport distances and benefits that may be achieved from replacing material and energy.

Transport from production place to user (A4)

Type	Capacity utilisation (incl. return) \%	Type of vehicle	Distance km	Fuel/Energy consumption	Value $(\mathrm{I} / \mathrm{t})$
Truck	28	Large lorry $(>28 \mathrm{t})$	100	$0,03 \mathrm{l} / \mathrm{tkm}$	2,6

Assembly (A5)

Installation of Sundolitt ${ }^{\circledR}$ requires practically no use of materials or energy. For this reason only transport and waste treatment of used product packaging is included. No benefits from recycling are included here, as such benefits are allocated to the next product life cycle.

Use phase (B1-B7)

It is assumed that the insulation material requires no maintenance or replacement during the technical 60 year life time of the building.

End of Life (C1-C4)

It is assumed that no materials or energy is used for de-constructing the insulation product. For this reason the end of life stage only includes transport of used insulation to the waste treatment location. Norwegian conditions are used for the whole market area. Land filling and incineration is assumed to take place at the waste treatment location, while recycling requires a 1000 km transport to a recycling plant in Europe (included in C3).

End of life (C1, C3, C4)

	Enhet	Verdi
Hazardous waste	kg	-
Mixed waste	kg	-
Reuse	kg	-
Recycling	kg	0,44
Energy recovery	kg	0,53
Landfill	kg	0,03

Transport waste treatment (C2)

Type	Capacity utilisation (incl. return) \%	Type of vehicle	Distance km	Fuel/Energy	Value	
Truck		Waste truck, diesel	10	0,4	l / km	4

Benefits and loads beyond the system boundaries (D)

Recycling values are based on the national waste accounts for 2012 (SSB 2014). During recycling and after the waste is sorted, a 20% process material loss is assumed. For energy recovery an efficiency of 0,4 is assumed both for thermal and electrical energy. It has been calculated that 75 \% replaces electricity and that 25 \% replaces oil (Modahl og Lyng 2011).

	Unit	Value
Replacement of virgin polystyrene	kg	0,35
Replacement of electricity	kWh	1,84
Replacement of oil	MJ	$\mathbf{2 , 2 1}$

Sundolitt

LCA: Results

The results have been calculated using the software SimaPro 8.0.2 (Pré 2014). Environmental impacts have been calculated using characterization methods as described in PCR and in EN 15804, using a self-developed characterization model based on CML-IA.

System boundaries (X=included, MND= module not declared, MNR=module not relevant)

Product stage			Assemby stage		Use stage							End of life stage				Beyond the system boundaries
					$\stackrel{\otimes}{\Omega}$								$\begin{aligned} & \stackrel{亡}{0} \\ & \stackrel{0}{n} \\ & \text { N } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & \bar{\aleph} \\ & \text { O} \\ & \text { O} \\ & \stackrel{0}{0} \end{aligned}$	
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
X	X	X	X	X	MIR	MID	X	X	X	X						

Environmental impact

Parameter	Unit	A1-A3	A4	A5		C2	C3	C4	D
GWP	$\mathrm{kg} \mathrm{CO}_{2}$-eqv	3,7	$1,1 \mathrm{E}-02$	$9,3 \mathrm{E}-02$		$1,4 \mathrm{E}-02$	1,7	$3,7 \mathrm{E}-03$	$-1,3$
ODP	$\mathrm{kg} \mathrm{CFC} 11-e q v ~_{2}^{2}$	$2,5 \mathrm{E}-08$	$1,9 \mathrm{E}-09$	$1,1 \mathrm{E}-10$		$2,1 \mathrm{E}-09$	$1,2 \mathrm{E}-08$	$9,8 \mathrm{E}-11$	$-3,1 \mathrm{E}-08$
POCP	$\mathrm{kg} \mathrm{C}_{2} \mathrm{H}_{4}$-eqv	$3,8 \mathrm{E}-03$	$6,6 \mathrm{E}-03$	$2,8 \mathrm{E}-06$		$3,1 \mathrm{E}-05$	$9,1 \mathrm{E}-05$	$1,2 \mathrm{E}-06$	$-1,1 \mathrm{E}-03$
AP	$\mathrm{kg} \mathrm{SO}_{2}$-eqv	$1,2 \mathrm{E}-02$	$3,5 \mathrm{E}-05$	$9,0 \mathrm{E}-06$		$6,1 \mathrm{E}-05$	$3,5 \mathrm{E}-04$	$2,3 \mathrm{E}-06$	$-4,6 \mathrm{E}-03$
EP	$\mathrm{kg} \mathrm{PO}_{4}{ }^{3-}$-eqv	$1,3 \mathrm{E}-03$	$9,6 \mathrm{E}-06$	$1,7 \mathrm{E}-05$		$1,4 \mathrm{E}-05$	$3,5 \mathrm{E}-04$	$1,8 \mathrm{E}-04$	$-4,0 \mathrm{E}-04$
ADPM	$\mathrm{kg} \mathrm{Sb-eqv}^{\text {ADPE }}$	MJ	$1,3 \mathrm{E}-06$	$6,3 \mathrm{E}-08$	$1,5 \mathrm{E}-09$		$1,3 \mathrm{E}-08$	$4,0 \mathrm{E}-07$	$9,2 \mathrm{E}-10$
$-3,6 \mathrm{E}-07$									

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources
Resource use

Parameter	Unit	A1-A3	A4	A5		C2	C3	C4	D
RPEE	MJ	3,9	$2,0 \mathrm{E}-03$	$1,6 \mathrm{E}-04$		$9,4 \mathrm{E}-04$	$1,5 \mathrm{E}-02$	$1,5 \mathrm{E}-04$	$-6,9$
RPEM	MJ	$5,9 \mathrm{E}-02$	$2,2 \mathrm{E}-04$	$2,4 \mathrm{E}-05$		$9,5 \mathrm{E}-05$	$1,7 \mathrm{E}-03$	$1,1 \mathrm{E}-05$	$-4,7 \mathrm{E}-02$
TPE	MJ	4,0	$2,2 \mathrm{E}-03$	$1,8 \mathrm{E}-04$		$1,0 \mathrm{E}-03$	$1,7 \mathrm{E}-02$	$1,6 \mathrm{E}-04$	$-6,9$
NRPE	MJ	42	0,17	$1,1 \mathrm{E}-02$		$1,8 \mathrm{E}-01$	1,16	$8,8 \mathrm{E}-03$	-17
NRPM	MJ	43	-	-		-	-	-	-16
TRPE	MJ	85	0,17	$1,1 \mathrm{E}-02$		0,18	1,16	$8,8 \mathrm{E}-03$	-33
SM	kg	-	-	-		-	-	-	
RSF	MJ	-	-	-		-	-	-	-
NRSF	MJ	-	-	-		-	-	-	-
W	m^{3}	$1,2 \mathrm{E}-02$	$5,3 \mathrm{E}-05$	$3,6 \mathrm{E}-05$		$2,5 \mathrm{E}-05$	$8,9 \mathrm{E}-04$	$9,3 \mathrm{E}-06$	$-4,1 \mathrm{E}-03$

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water
End of life - Waste

Parameter	Unit	A1- A3	A4	A5		C2	C3	C4	D
HW	kg	$1,5 \mathrm{E}-05$	$2,0 \mathrm{E}-07$	$3,2 \mathrm{E}-08$		$7,3 \mathrm{E}-08$	$1,8 \mathrm{E}-06$	$4,6 \mathrm{E}-09$	$-2,5 \mathrm{E}-06$
NHW	kg	0,10	$2,0 \mathrm{E}-03$	$1,2 \mathrm{E}-03$		$3,0 \mathrm{E}-04$	0,030	0,032	$-0,084$
RW	kg	$1,9 \mathrm{E}-09$	$4,7 \mathrm{E}-11$	$4,1 \mathrm{E}-12$		$2,5 \mathrm{E}-11$	$3,7 \mathrm{E}-10$	$3,4 \mathrm{E}-12$	$-1,1 \mathrm{E}-09$

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed
End of life - Output flow

Parameter	Unit	A1- A3	A4	A5		C2	C3	C4	D
CR	kg	-	-	-		-	-	-	-
MR	kg	-	-	$1,4 \mathrm{E}-02$		-	0,44	-	0,44
MER	kg	-	-	$1,6 \mathrm{E}-02$		-	0,53	-	0,53
EEE	MJ	-	-	-		-	-	-	6,6
ETE	MJ	-	-	-		-	-	-	2,2

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Additional Norwegian requirements

Greenhous gas emission from the use of electricity

Electricity data is derived from statistics published by ENTSO-E (2012), coupled with life cycle inventory data for different energy technologies in Ecoinvent 2.2. The basis is the national production mix (in compliance with PCR) with subtractions for exports and additions for imports. All national accounts are included, in order to include the effects of exchanges between countries. Infrastructure is included in all data sets. Sensitivity analysis has been undertaken in order to evaluate how the choice of electricity mix affects results.

Greenhouse gas emissions: $0,0073 \quad \mathrm{~kg} \mathrm{CO}_{2}$-ekv/MJ

Hazardous substances

The product does not contain substances on the REACH Candidate list (updated 15.06.2015), substances on the Norwegian Priority list of hazardous substances ("Prioritetslisten", 10.06.2015), or substances that lead to the product being classified as hazardous waste. The chemical content of the product is in accordance with the Norwegian law on products regulation ("Produktforskriften"). The absence of hazardous substances is declared by Brødr. Sunde as.

Transport

Transport from the factory gate to construction site in Norway:

ndoor environment

The product has no influence on the indoor environment.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography

ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
	LCA-rapport for Sundolitt ${ }^{\left({ }^{\text {a }} \text { isolasjon, EPD-rapport 2/2015, Oslo: COWI+P399 }\right.}$
Brekke, Andreas og Melvær, Martin Sveinssønn (2015)	
NPCR 12:2012	Product-category rules: NPCR 12 rev1 Insulation materials, EPD-Norge
Econinvent Centre (2014)	Ecolnvent version 2.2
EN 13164:2012	Thermal insualation products for buildings. Factory made products of extruded polystyrene (XPS). Specification
EN 14307:2009	Thermal insulation products for building equipment and industrial installations. Factory made products of extruded polystyrene (XPS). Specification
EN 14934:2007.	Thermal insulation and light weight fill products for civil engineering applications - Factory made products of extruded polystyrene (XPS)
Modahl, Ingunn Saur og Lyng, Kari-Anne (2001)	Livsløpsanlayse for gjenvinning av plastemballasje. Fra norske husholdinger, OR.20.11, Fredrikstad: Østfoldforskning

epd-norge.no The Norwegian EPD Foundation	Program operator The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo Norway	Phone: e-mail: web	$+4723088292$ post@epd-norge.no www.epd-norge.no
epd-norge.no The Norwegian EPD Foundation	Publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo Norway	Phone: e-mail: web	$+4723088292$ post@epd-norge.no www.epd-norge.no
Sundolit'	Owner of the declaration Brødr. Sunde as PB 8115 Spjelkavik, 6022 Ålesund Norge	Phone: e-mail: web	$+4770177000$ norway@sundolitt.com www.sundolitt.no
$\cap \sqrt{ } \cap \sqrt{\square}$	Author of the Life Cycle Assessment COWI AS PB 6412 Etterstad, 0605 Oslo Norge	Phone: Fax e-mail: web	$\begin{aligned} & +4745222149 \\ & +4722722900 \\ & \text { msme@cowi.no } \\ & \hline \text { www.cowi.no } \end{aligned}$

